THE 59th ANNUAL CANADIAN REINSURANCE CONFERENCE

Jean-Yves Rioux

Big Data and Analytics' dramatic impacts in the Life Insurance Industry

Agenda

- Drivers and barriers
- Data sources
- The process
- Life and health insurance applications

REach FOR GOLD

Modeling/analyzing longevity

"Not everything that can be counted counts, and not everything that counts can be counted." – Albert Einstein

"If you can't explain it simply, you don't understand it well enough." – Albert Einstein

"Those who do not remember the past are condemned to repeat it." - George Santayana

"The price of light is less than the cost of darkness." – Arthur C. Nielsen

"War is ninety percent information." – Napoleon Bonaparte

"Facts do not cease to exist because they are ignored." – Aldous Huxley

The environment

The interest in predictive modeling has increased substantially in recent years.

HE 59th ANNUAL CANADIAN REINSURANCE CONFERENCE

Internal data sources

There is increased interest in understanding, restructuring and using own data.

Past/current claims	Experience results
Date incurred	Incidence
Date reported	Lapse
Amount	Termination
Cause	Mortality
	Persistency
Product design	Asset info
Surrender rights/charges	Coupon rates
Vesting	Notional amounts
Market value adj.	Market values
Renewal rights	
Rollover/reset rights	
Conversion rights	
	Past/current claimsDate incurredDate reportedAmountCauseProduct designSurrender rights/chargesVestingMarket value adj.Renewal rightsRollover/reset rightsConversion rights

REach FOR GOLD

Representative data categories

External data sources

Companies who are succeeding in advanced analytic analysis are doing so by their commitment to exploring new data.

Acxiom Economic Demographic Financial Agriculture and Agri-Food Canada AM Best Real Estate Credit Score Age AWCBC Equities Gender Gross/Total Debt Bank of Canada Service Ratio Bloomberg Commodities Ethnicity BDC Interest Rates Credit Ratings Income Canada Hospital Directory Foreign Exchange CMHC Immigration Data Canada Revenue Agency Inflation Canadian Cancer Society Economic/Bus. trends CIHI CMA Cap Index National indices DB, LB and health Medical & drugs Competitive data Citizenship and Immigration Canada Dun & Bradstreet **Disability Data** Premium Rates Wage Data Death HRSDC Wealth/Net Worth Diabetes Hospital Directory Crediting Rates Environics Equifax Cancer Nursing Home Data Guaranteed Rates Unemployment Stats Experian Cardiovascular Hospital Visit Statistics Product Features Aggregate CRA Data GHDx Disability Prescription Drug Industry Canada Usage lpsos Injury LifeGuide Physician Data Depression/Mental Natural Resources Canada Office of the Superintendent of Bankruptcy Canada Geographic Behaviors & lifestyle Purchase behaviors OECD PAHO Crime Statistics Physical Activity Level Purchase Propensities Public Health Agency of Canada Climate Data Hobbies Spend by Category Public Safety Canada Statistics Canada Lifestyle Clusters Purchase Triggers Geographic Mapping Undata Social Values Population UIS Concentration World Bank World Values Survey

Representative data categories

REach FOR GOLD~

Data providers

THE 59th ANNUAL CANADIAN REINSURANCE CONFERENCE

A continuous process...

The process of delivering business analytics results is one of continuous improvement.

... that needs to evolve

Applications – Life and Health

Sales & marketing

- Identify target groups
- Identify characteristics correlated with purchase decision
- Understand purchase behaviors and recommend the right product
- Recruit agents whose characteristics are similar to successful agents
- Monitor existing agents

Claims

- Predict claim frequency and severity
- Prioritize resources
- · Identify likely fraudulent/rescinded claims

Pricing/reserving

- Improve pricing accuracy
- Project impact of deviations from pricing parameters
- Reserve more accurately

Underwriting

- Identify best risks and prioritize acceptation efforts
- Identify applicants for whom additional underwriting is needed
- Support simplified underwriting

In-force management

- Identify and retain policyholders likely to surrender
- Offer additional products to current customers
- Profile customers

Experience analysis

- Identify experience drivers
- Handle low credibility data by enhancing the data
- Create own mortality/lapse tables

THE 59th ANNUAL CANADIAN REINSURANCE CONFERENCE

Application: Modeling Longevity

Questions

- What is the empirical average death rate (DR)?
- What is the empirical implied mortality improvement (MI)?
- What would modeling predict?
- How does the modeled MI compares to CIA promulgated scale?
- Are all variables important for forecasting?

The Data

- Canadian Standard Ordinary Mortality 2005-2012, Canadian Institute of Actuaries [Insured population experience]
- Human Mortality Database 1921-2012, Statistics Canada [General population experience] (as a secondary data set)

Data (CIA CSO) – Empirical rates

Death rates

DR	'05	' 06	'07	'08	'09	'10	'11	Avg
20-25	0.0004	0.0003	0.0003	0.0004	0.0003	0.0002	0.0001	0.000
40-45	0.0013	0.0016	0.0018	0.0020	0.0023	0.0032	0.0008	0.002
60-65	0.0088	0.0064	0.0063	0.0067	0.0053	0.0091	0.0057	0.007
80-85	0.0547	0.0498	0.0546	0.0497	0.0410	0.0401	0.0493	0.048

Mortality improvement rates

MI	'06	'07	'08	' 09	'10	'11	Avg
20-25	29.2%	3.4%	-48.5%	11.1%	39.5%	29.1%	10.6%
40-45	-20.1%	-12.6%	-13.6%	-13.7%	-41.2%	74.3%	-4.5%
60-65	26.8%	2.7%	-6.5%	20.1%	-69.9%	37.2%	1.7%
80-85	8.9%	-9.5%	8.9%	17.5%	2.1%	-22.9%	1.7%

Item	Specifics
Target variable	Death rate (\$ claims/ \$ exposure)
Predictive variables	Year, Sex, Smoker, Type of Underwriting, Insured amount, Duration, Attained Age
Predictive models	Generalized Linear Model (GLM)Lee-Carter (L-C)
Approach	 Fitted model to 2005-2011 data Tested the model fit Tested the predictive powers on 2012 Derived and compared the MI rates

The GLM Model (Probit version)

• $\phi^{-1}(DR_i) = \beta_0 + \beta_1 x_{1,i} + \dots + \beta_M x_{M,i} + \varepsilon_i$

Where

- DR_i is the death rate for occurrence i
- $\beta_0 \dots \beta_M$ are the regression coefficients indicating the relative effect of a particular explanatory variable on the outcome
- $x_{1,i} \dots x_{M,i}$ are the explanatory variables
- ε_i is the error term

THE 59th ANNUAL CANADIAN REINSURANCE CONFERENCE

GLM Model – Predictive variables

- Most important predicting variables have lower p-values
- Eliminated of product type and Preferred classification due to high p-values
- Odd ratios indicate the level of change per unit increase in the variable

Vear	Odd s	Amount insured	Odds ratio	Smoker	Odds ratio
Tear	rati	0-10K	1.00	Smoker	1.00
÷		10K-50K	0.95	Non-	0.70
L	0.99	50K-100K	0.91	Smoker	0.79
		100%	0.07	Smoker	0.00
Sex	Odds	100K- 250K	0.87	status	0.93
	ratio	250K-	0.88	UTKHOWH	
Male	1.00	500K		Type of	Odd
Female	0 84	500K-1M	0.78	Underwriti	S
remare	0.01	1M+	0.83	ng	ratio
				Medical	1.00
Duratio	Odd D S			Non- medical	1.00
n	rati O	Attained Age	Odds ratio	Paramedical	0.96
D	1.00	x	1.04	Unknown	0.97

GLM Model – Fit

Model is a good fit

• Coefficients of determination:

 $-R^2 = 22\%$

 $-Adjusted R^2 = 44\%$

• Goodness of fit test (Chi Square) = 5506

- P-value from Chi Square test < 0.001
- Modeling error and projection range

GLM Model – Fit (cont'd)

REach FOR GOLD

18

GLM model - Observed DR vs. Predicted DR

GLM Model – Power of Predictability

Coefficient of determination (R^2) for 2012 predicted DR is 22%

Death rates

DR	'05	'06	'07	'08	'09	'10	'11	Avg
20-25	0.00002	0.00002	0.00002	0.00002	0.00002	0.00002	0.00002	0.00002
40-45	0.00049	0.00049	0.00048	0.00048	0.00047	0.00047	0.00047	0.00048
60-65	0.00738	0.00729	0.00725	0.00716	0.00707	0.00701	0.00692	0.00715
80-85	0.05679	0.05642	0.05551	0.05517	0.05486	0.05438	0.05402	0.05531

Mortality improvement rates

МІ	'06	'07	'08	'09	'10	'11	Avg
20-25	1.5%	1.1%	1.0%	2.9%	0.2%	1.2%	1.3%
40-45	0.9%	0.5%	1.5%	0.9%	0.9%	0.9%	0.9%
60-65	1.1%	0.6%	1.3%	1.2%	0.8%	1.3%	1.0%
80-85	0.7%	1.6%	0.6%	0.6%	0.9%	0.7%	0.8%

$$log(DR_{xt}) = a_x + b_x k_t + \varepsilon_{xt}$$

Where

- DR_{xt} is the death rate for age x at time t
- *a_x* and *b_x* are the regression coefficients relating to the age
- k_t is the regression coefficient relating to the time
- ε_{xt} is the error term

THE 59th ANNUAL CANADIAN REINSURANCE CONFERENCE

LC Model – Calibration

22

THE 59th ANNUAL CANADIAN REINSURANCE CONFERENCE

LC Model – Fit

CIA CSO Data

HMD Data

THE 59th ANNUAL CANADIAN REINSURANCE CONFERENCE

LC Model – Power of Predictability

 Coefficient of determination (R²) for 2012 observed v.s. predicted death rate is 85%

LC Model – Power of Predictability

CIA CSO Data Lee-Carter Model Prediction based on CIA Data 2005 - 2011 Canada Mortality Rate (log scale) pg Yes

LC Model – DR Illustration

REach FOR GOLD

26

LC HMD model - DR for age 40

LC Model – MI Illustration

Observed v.s. predicted MI for age 40 based on HMD

Year

HMD Observed — L-C Predicted

Death rates

DR	'05	'06 '	'07	'08	' 09	'10	'11	Avg
20-25	0.00043	0.00036	0.00041	0.00034	0.00038	0.00027	0.00027	0.000
40-45	0.00060	0.00055	0.00059	0.00053	0.00056	0.00046	0.00046	0.001
60-65	0.00436	0.00419	0.00432	0.00414	0.00424	0.00387	0.00388	0.004
80-85	0.04702	0.04262	0.04591	0.04133	0.04380	0.03502	0.03515	0.042

Mortality improvement rates

MI	'06	' 07	'08	' 09	'10	'11	Avg	
20-25	15.	5% -1	.3.5%	16.1%	-10.0%	27.9%	-0.4%	6.0%
40-45	8.	3% -	6.8%	8.9%	-5.2%	17.9%	-0.3%	3.8%
60-65	3.	9% -	3.0%	4.1%	-2.4%	8.6%	-0.1%	1.8%
80-85	9.	4% -	7.7%	10.0%	-6.0%	20.0%	-0.4%	4.2%

Comparison of the results

Comparison GLM and LC models

REach FOR GOLD

Predicted DR for year 2012

Comparison of the results (cont'd)

Comparison of mortality improvement rates GLM, L-C and CIA promulgated

Avera ge MI	Empiric al data	GLM	Lee Carter CIA CSO	Lee Carter HMD	CIA
20-25	10.6%	1.3%	6.0%	4.9%	2.0%
30-35	-14.4%	1.3%	-0.8%	4.9%	2.0%
40-45	-4.5%	0.9%	3.8%	4.0%	1.9%
50-55	-7.3%	0.9%	4.6%	3.0%	1.4%
60-65	1.7%	1.0%	1.8%	2.6%	1.0%
70-75	-1.4%	0.9%	1.6%	2.5%	1.0%
80-85	1.7%	0.8%	4.2%	2.1%	1.0%
90-95	-7.0%	1.1%	0.1%	1.1%	0.8%

Comparison of the results (cont'd)

Comparison of mortality improvement rates GLM, L-C and CIA promulgated

7.0% 6.0% 5.0% 4.0% 3.0% 2.0% 1.0% 0.0% -1.0% -2.0% -3.0% 15-20 20-25 25-30 30-35 35-40 40-45 45-50 50-55 55-60 60-65 65-70 70-75 75-80 80-85 85-90 90-95 95-10 - CIA

REach FOR GOLD

Average MI Comparison

Appendix – LC Model – Fit

CIA CSO Data HMD Data 2006 2005 2007 2008 2005 2006 2007 0.30 0.25 40 2 0.25 0.25 0.3 33 0.25 0 0.20 qx[, 85] 0.20 qx[, 86] qx[, 87] 8 °@ 0 3 3 8 5 0 ×. 0.20 0.20 0 о 0 0 0 0.15 5 5 ° o 0 0.15 ô 0.15 q×[, 1] qx[, 2] qx[, 3] q×[, 4] 0 0.15 8 **0**00 000 o @000 0000 o 0.10 0.10 40 80 40 80 0 80 0 40 0 0 8 0 0.10 0.10 Age Age Age ο o 00 8 2009 2010 2011 0.05 0.05 0.05 0.05 å 8 0.4 8.0 8.0 8.0 80 0.3 80 qx[, 89] qx[, 90] qx[, 91] 03 3 0.2 0 20 60 0 20 60 0 20 60 20 60 0 5 Age Age Age Age 8 80 0 40 0 40 80 0 40 80 2009 2010 2011 Age Age Age o o 0.25 0.20 0.20 Å 8 0.20 0 01 0.15 0.15 ο ο 0 0 0.15 q×[, 5] qx[, 6] q×(, 7) 8 o ο 0.10 0.10 ο o 0 © 0.10 8 ത ο 0 8 0.05 0.05 ø 0.05 0.0 8.0 0.0 0 20 60 0 20 60 0 20 60 Age Age Age

2008

40

REach FOR GOLD

Age

80

33

THE 59th AN

THE 59th ANNUAL CANADIAN REINSURANCE CONFERENCE

Appendix – LC Model – Illustrations

THE 59th ANNUAL CANADIAN REINSURANCE CONFERENCE