Genetic Testing in Insurance: A Medical View

David Moss FIA
SVP, Swiss Re Canada

Florian Rechfeld PhD
Medical Biochemist, L&H R&D, Swiss Re

Loraine Oman-Ganes MD, FRCPC
Chief Medical Director, Sun Life Financial
Leadership: Scanning the Horizon

http://www.bbc.co.uk/sn/tvradio/programmes/horizon/broadband/tx/alone/
Advances in the landscape of genetic testing
Clinical genetic testing, DTC-testing and insurance exposure
Regulations on the use of genetic data in private life insurance
What is a Genetic Test?
Family History: It’s Importance
Transforming Challenges into Opportunities:
 • Precision Medicine
 • Pharmacogenomics
 • High Cost Drugs
Advances in the landscape of genetic testing
Genomics 101: DNA, Genes and Genomes

Source: http://www.voidspace.org.uk/technology/genome/1.shtml
Genetic information and technology have grown exponentially over the last decades.
Full genome sequencing becomes affordable

Plummeting genome sequencing costs and advances in human genetics increases the availability for different types of genetic testing.

Source: NIH National Human Genome Research Institute http://www.genome.gov/sequencingcosts/
Rapid increase in genetic test development for diseases

March 21, 2016
- 55,887 Tests
- 4,537 Disorders
- 5,367 Genes
- 679 Laboratories
- 1,067 Clinics

Source: https://www.genetests.org/
Evolution of genetic testing technologies

- Single Gene Testing
- Gene Panels
- Whole Exome Sequencing
- Whole Genome sequencing
Worldwide large Genome Research Projects

➤ UK 10K Project (since 2010; UK):
 ❖ Sequencing 10,000 UK individuals for analysis of low-frequency and rare genetic changes in human disease.

➤ The 100,000 Genomes Project (since 2013; UK):
 ❖ Sequencing 100,000 UK patients with rare diseases and their families and patients with cancer.

➤ Precision Medicine Initiative (announced 2015, enrollment 2016; US)
 ❖ Sequencing 1,000,000 US individuals to advance personalized medicine in all areas of health.

➤ Beijing Genomics Institute 3 Million Genomes project (announced 2014)
 ❖ Sequencing 1 million people, 1 million microorganisms, 1 million plants and animals.
Paradigm shifts in modern clinical medicine

- Millennia ago: "Macroscopic" med.
- Centuries ago: "Microscopic" med.
- Last decade: "Molecular" medicine

Genetic testing is the key to personalized medicine which aims at better diagnosis, prevention and effective treatment of disease.
Clinical genetic testing, DTC - testing and insurance exposure
Types and use of different genetic tests

1. Diagnostic testing
2. Pharmacogenomic testing
3. Predictive/presymptomatic testing
4. Carrier testing
5. Newborn screening
6. Prenatal testing
7. Preimplantation testing
8. Research testing

Source: http://www.genome.gov/19516567
Genetic testing in the clinical practice grows rapidly

Advances in the understanding of human genetics increases the availability and uptake of genetic testing in the clinical practice.
November 2013: FDA notifies 23andMe to stop offering health-related genetic reports in the US pending completion of the agency's regulatory review processes

December 2014: 23andMe launched slimmed-down version in UK and Canada

October 2015: 23andMe relaunched restricted health testing in the US market
Genetic test definitions: Diagnostic vs. Predictive genetic test

Diagnostic genetic test

- To confirm or rule out a known or suspected genetic disorder in a *symptomatic* individual.
- Generally no restrictions on the use of diagnostic tests in insurance underwriting.

Predictive genetic test

- Offered to *asymptomatic* individuals with a family history of a genetic disorder to *predict* future risk of disease.
- Disclosure obligation and use of predictive genetic test results in insurance underwriting *vary by market practice and legislation.*
A steady increase of genetic tests results disclosed to the UK life insurance industry can be observed.

Source: Swiss Re
Predictive genetic tests performed in the clinical practice and disclosed to UK life insurers

19% annual growth rate of predictive genetic tests performed in clinical practice

16% annual growth rate of predictive genetic test results disclosed to UK insurers

Source: CMGS Audit Reports

Source: Swiss Re
Regulations on the use of genetic data in private life insurance
Insurers are faced with various levels of restriction on use of genetic data in different countries.

Legislative regulations range from voluntary moratoria, legislation to strict outright bans and approaches continue to evolve.
Regulations on the request and use of predictive genetic tests in insurance underwriting in different markets

<table>
<thead>
<tr>
<th>Limitations</th>
<th>Level</th>
<th>Countries and limits (life cover/annuity)</th>
</tr>
</thead>
<tbody>
<tr>
<td>No request/use of predictive genetic test results</td>
<td>Ban</td>
<td>Austria, Belgium, France, Ireland, Portugal</td>
</tr>
<tr>
<td></td>
<td>Moratorium</td>
<td>Finland, Greece</td>
</tr>
<tr>
<td>No request/use of predictive genetic test results up to certain insured sum/annuity</td>
<td>Law</td>
<td>Germany < EUR 300 000 / 30 000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Switzerland < CHF 400 000 / 40 000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Netherlands < EUR 250 000</td>
</tr>
<tr>
<td></td>
<td>Moratorium</td>
<td>UK < GBP 500 000 / 300 000 (CI)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sweden < EUR 140 000 / 19 000</td>
</tr>
<tr>
<td>Minor restrictions with general anti-discrimination and data protection laws</td>
<td></td>
<td>Czech Rep., Italy, Spain</td>
</tr>
<tr>
<td>Data protection/Privacy laws (minor restrictions in US by state laws)</td>
<td></td>
<td>Canada, USA</td>
</tr>
</tbody>
</table>

Private insurers do not require or initiate genetic testing to be done in order to obtain insurance cover!

- Restrictions on request/use of family history information at UW stage in Belgium, Finland, Netherlands*, Norway, Portugal, Sweden**
 * limited by amount and cause, ** limited by amount
CLHIA Industry Code: Genetic Testing Information for Insurance Underwriting

• April 23, 2015: Canadian Life and Health Insurance Association Industry Code on Genetic Testing:
 ➢ Insurers will not require an applicant to undergo a genetic test.

 ➢ Insurers will not ask for the results of genetic test done as part of a research project where the results are not shared with the applicant.

 ➢ Insurers may use or request the results of an existing genetic test for the purposes of classifying risk.

 ➢ Insurers will use genetic testing information for the applicant's benefit where it offsets information available from other sources.

 ➢ A dispute resolution system will be established to address complaints related to underwriting decisions involving genetic test results
Regulatory approaches in Canada?

• Oct. 17, 2013
 ➢ Senate Bill S-201 (Formerly S-218): An Act to prohibit and prevent genetic discrimination seeking to prohibit the requirement of genetic testing and the disclosure of genetic testing results as a condition for insurance underwriting.

• July 10, 2014
 ➢ Office of the Privacy Commissioner statement asking life and health insurers to refrain from requesting access to existing genetic test results for insurance underwriting purposes.

• Feb. 19, 2015
 ➢ Senate Bill S-201 Final report from Standing Senate Committee on Human Rights. All sections that would have had a negative impact on insurance companies removed.

The debate over use of genetic testing information in insurance underwriting will remain and Canadian insurers are on the verge of being legislated against!
What is a Genetic Test?
Everything’s Genetic...
There is a genetic contribution to all aspects of health and disease
Genetic Exceptionalism

Genetic Tests relevant to Insurers are Medical Tests
Some insurance applicants who are at increased risk for genetic/hereditary conditions apply for insurance before they have genetic testing.
Traditional Lens of a Genetic Test: Rare, Single Gene Conditions
Question

What were the clues which may have led to Angelina’s BRCA1 test?

A. Her mother had ovarian cancer in her 50’s
B. She read about BRCA testing in a magazine
C. She had a family history of breast and ovarian cancer
D. A and C
The Importance of Family History

Does it suggest Autosomal Dominant Inheritance?

- Search for “large buckets” of Risk: Does the pattern suggest a hereditary condition?

- Most of the Family History reflects “common disease”: genetic and environmental causes

4/6/2016
The Family History is Self-Reported

familyhistory.hhs.gov
Test ideally starts with an Affected Family Member

...informative results become a reference point for others who may wish testing
All Cancer is Genetic: Cancer Arises From Gene Mutations

Germline mutations (hereditary: 10%)
- Present in egg or sperm
- Pass from one generation to next
- Cause hereditary cancer syndromes

Parent

Child

Mutation in egg or sperm

All cells in offspring have the mutation

Somatic mutations (common: 90%)
- Occur in nongermline tissues
- Are not passed from one generation to next

Somatic mutation (in tissue where cancer forms: ie. breast)

Accumulate with AGE

Source: ASCO
Into the Future: Projecting Risk

<table>
<thead>
<tr>
<th>Favorable</th>
<th>Unfavorable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Risk can be mitigated</td>
<td>Risk cannot be mitigated</td>
</tr>
<tr>
<td>Management effective</td>
<td>Management: limited efficacy</td>
</tr>
<tr>
<td>Evidence of ongoing compliance</td>
<td>Non-compliant or inconsistent compliance</td>
</tr>
<tr>
<td>Access to specialist care</td>
<td>Limited access to care</td>
</tr>
<tr>
<td>Evidence-based care</td>
<td>Medical care not evidence-based</td>
</tr>
<tr>
<td>Few organs at risk</td>
<td>Multi-system risk</td>
</tr>
<tr>
<td>Non-progressive disease</td>
<td>Progressive/Degenerative disease</td>
</tr>
</tbody>
</table>
Genetic Tests are Voluntary!

- Prenatal- includes preimplantation diagnosis
- Newborn Screening (exception to Consent requirement)
- Single gene disorders testing (over 2700 tests; over 7,000 conditions)
- Genomic and Epigenomic tests
- Pediatric vs Adult onset and testing
- Variability!
 - In clinical expression
 - In genetic basis... of the same disease
- Traditional vs Direct to Consumer (DTC)
- Research vs Clinical Practice
- Consent, Disclosure, Family Implications
Genetic Counseling Involves Families and a Process of Pre- and Post Test Counseling

• Referral/visit for genetic counseling does not necessarily mean that the client
 • 1. attended the appointment or
 • 2. had genetic testing

• Test may be declined due to perception of insurance impact.
You May Not Need to obtain the Genetic Test Result...

• Will having the genetic test result add any value to the Risk assessment?

A. 35 yo female; states she tested positive for the BRCA1 “gene”...

B. 2 year old male; identified to have an abnormal newborn screen result for cystic fibrosis. His doctor says he does not have CF.
Testing Expands from Single Genes to Panels of Genes

CancerNext is a next generation sequencing (NGS) panel that simultaneously analyzes 32 genes associated with increased risk for breast, ovarian, colorectal, uterine, and other cancers.

http://www.ambrygen.com/tests/cancernext
Genetic Testing which is no longer based on Family History: will identify numerous individuals testing positive—prior to onset of clinical features of disease

Genetic Testing for Hereditary Colorectal Cancer

The EGAPP Working Group recommends that everyone with a new diagnosis of colorectal cancer (regardless of age or family health history) be offered genetic testing for Lynch syndrome. If you have colorectal cancer, getting tested for Lynch syndrome can help your family members find out if they are at risk and, if so, take steps to lower their risk.
Transforming Challenges Into Opportunities

1. Precision Medicine is a current reality
2. Genetic Tests Refine Diagnosis, Prognosis, and Treatment of common diseases
3. Genetics is the Foundation of Drug Discovery
4. The Access Challenge:
 What medical options will we cover?
 How will we pay for it?
5. Be Anticipatory: The Future
Single Gene Disorders and Complex Traits (Common Diseases)
How Useful Is Whole Genome Sequencing to Predict Disease?

Few diseases have strong enough genetic components to make sequencing a solid way to assess individual risk.

By Katherine Harmon | April 2, 2012

A $1,000 genome sequence is close to being available. What will your sequence tell you about your actual risk for certain diseases?

Many companies advertise a laundry list of disease risks associated with your genes. But your genome is unlikely to reveal which conditions will be diagnoses of...
EPIGENETICS: Your DNA is Not your Destiny
“Opting out” of obtaining Actionable Incidental Results from Genome Sequencing

ACMG NEWS

Media Contact: ACMG Media Relations
kbeal@acmg.net

ACMG Updates Recommendation on "Opt Out" for Genome Sequencing Return of Results

Bethesda, MD - April 1, 2014 | There has been significant discussion surrounding the initial ACMG recommendations for the return of results from genome-scale sequencing issued in March of 2013. The ACMG Board of Directors has listened carefully to the members’ views and appreciates the many forums in which divergent and valuable opinions have been expressed. The positions of ACMG members regarding the issues raised by the recommendations have been assessed through a variety of mechanisms, including direct feedback, participation by Board members in numerous forums exploring these issues, informal conversations, published
Is Your DNA Clock Running Fast? You May Die Sooner Than Later

University of Edinburgh researchers find that the difference between actual age and DNA methylation age is predictive of all-cause mortality in later life. [©ilironova/Fotolia]
Precision Medicine is a Current Reality

- January 30, 2015: President Obama’s Precision Medicine Initiative: $215 M
- Precision Medicine=Personalized, Individualized
- Based on Genomics: Analyze genomes of 1 million Americans
 - Also:
 - Electronic Health Record (HER) Data
 - Medical Device Data
 - Epigenomic Data
- Goal: Customize health care:
 - Diagnosis
 - Prognosis
 - Treatment
- Current focus: Cancer
- Goal: expand to all diseases
Cancer is a disease of DNA...

“Our means of defining cancer by what tissue it arose in is going to go by the boards pretty soon”

Francis Collins - WSJ November 8, 2013

Cancer Staging

Key Points

- Staging describes the extent or severity of a person’s cancer. Knowing the stage of disease helps the doctor plan treatment and estimate the person’s prognosis.
- Staging systems for cancer have evolved over time and continue to change as scientists learn more about cancer.
- The TNM staging system is based on the size and/or extent (reach) of the primary tumor (T), whether cancer cells have spread to nearby (regional) lymph nodes (N), and whether metastasis (M), or the spread of the cancer to other parts of the body, has occurred.
- Physical exams, imaging procedures, laboratory tests, pathology reports, and surgical reports provide information to determine the stage of a cancer.

http://www.cancer.gov/cancertopics/diagnosis-staging/staging/staging-fact-sheet
The Engine of Precision Cancer Medicine

1. Patient encounter
2. Omic profiling
3. Data interpretation
4. Management decision
5. Clinical response?
6. Drug resistance?
7. Salvage or new therapy?

Fresh biopsy
The molecular “footprint” of cancer guides treatment

Grace Silva has a horrible form of thyroid cancer that is considered untreatable — usually, patients are sent to a hospice and die within months of learning they have the disease. But she is still alive four years after her diagnosis. She is what cancer doctors call an exceptional responder: someone who defies all expectations by responding dramatically to a drug tried not with a real rationale but more out of a doctor’s desperate urge to do something.

The annals of medicine are full of stories of exceptional responders, but until recently, they were just that: stories. Case histories that could not be generalized because there was no way to know why these patients got better when others did not.

But now, with the advent of rapid and
Pharmacogenomics: Transforming Care

Samantha Smith

Drug inquiry:
CLOPIDOGREL

Recommendation:
Start with normal starting dose (e.g., 75 mg/m2/d or 1.5 mg/kg/d) and adjust doses of mercaptopurine (and of any other myelosuppressive therapy) without any special emphasis on mercaptopurine compared to other agents. Allow 2 weeks to reach steady state after each dose adjustment. (CPIC)

NO ISSUE FOUND
Use as directed for Samantha

CAUTION: ISSUE FOUND
Medications may not work for Samantha

URGENT ISSUE FOUND
Medications may not work or cause serious issues for Samantha

DRUG NAMES
- amitriptyline
 (Brand name)
- aripiprazole
 (Brand name)
- clomipramine
 (Brand name)
- dexamethasone
 (Brand name)
- lisdexamfetamine
 (Brand name)
- moclobemide
 (Brand name)
- nortriptyline
 (Brand name)
- paroxetine
 (Brand name)
- promethazine
 (Brand name)
- quetiapine
 (Brand name)
- sertraline
 (Brand name)
- sertindole
 (Brand name)
- tramadol
 (Brand name)
- tramadol
 (Generic)
- tramad
Circulating Tumor DNA (ctDNA): A New Generation of Cancer Biomarkers

ctDNA:
- small pieces of DNA released into blood by dying tumor cells
- Detectable levels correlate with stage of cancer
- Screening detects and follows progression of tumor
- Screen for mutations pre- and post therapy; test targeted drug response and identify new mutations formed during therapy

http://www.genome.gov/27556716
High Cost Drugs for Rare Diseases

Vimizim: $1 M/year
“Thinking Differently About Leadership”

1. Gather current information; Analyze it differently
2. Keep a scope on the horizon: Be Anticipatory
 • What will change in the future? (Legal, Regulatory issues)
 • How will we prepare?
3. Create collaborative solutions
 • New product innovation
 • Pooling
 • Industry/Government collaborations
 • Intra-industry collaboration
 • Big Data analysis
4. Client focus: autonomy, devices, simplicity of access
5. Navigating the Access Challenge and Ethical Issues
QUESTIONS?